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GAS RELEASE AND CONDUCTIVITY
MODIFICATION STUDIES

Lewis M. Linson and David C. Baxter

Science Applications, Inc.
La Jolla, California 92038

ABSTRACT

The behavior of gas clouds produced by releases
from orbital velocity in either a point release or venting
mode is described by the modification of snowplow equations
valid in an intermediate altitude regime. Quantitative
estimates are produced for the time dependence of the
radius of the cloud, the average internal cnergy, the
translational velocity, and the distance traveled. The
dependence of these quantities on the assumed density
profile, the internal energy cf the gas, and the ratio
of specific heats is examined. The new feature is the
inclusion of the effect of the large orbital velocity.

The resulting gas cloud models are used to calculate

the characteristics of the field-line-integrated Pedersen
conductivity enhancements that would be produced by the
release of barium thermite at orbital velocity in either
the point release or venting modes as a function of

release altitude and chemical payload weight.



I. INTRODUCTION

A number of ezperimentsl'd have been suggested for

the Spacelab that require the release of large amounts of
gas into the ionosphere. Examples of such experiments

are the:

® Generation of acoustic gravity waves from a known

source of momentum and energy;

® Enhancement of the ionospheric electron concentration
and modification of the ionospheric conductivity
by the deployment of easily ionizable vapors such

as barium or cesium;

® Dispersement of chemically reactive gases, such
as H2 or 320, ir order to affect the neutral and
ionization chemistry aad create holes in the F-

region of the ionosphere;

® Creation of large-scale neutral winds by transferring

momentum to the ambient avtmosphere;

® Testing of Alfvén's critical velocity hypothesis
regarding the anomalous ionization of neutrals

moving at high velocity across a magnetized plasma.
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These experiments and others like them require the
release of large amounts of gas in order to either disperse
material, transfer momentum, or input energy. The experi-
ments can be divided into two classes depending on the
suggested method of deployment--either as a point release
or in a venting modr We define a point release as a rapid
or explosive release of gas or material that takes place
in a time less than a second. In this case, the region of
space into which the material is dumped is confined and
the expansion of the gas can be :(reated as being spherical.
Other experiments require the deployment of gas in a venting

mode lasting from five to ten or more seconds. The released

gas is then spread out in a trail and it expands cylindrically.

If conducted from Spacelab the released gas initially
will have a large translational velocity equivalent to a
hypersonic Mach 10 flow. The large kinetic energy associated
with the initial translational velocity is a new feature
that has not been treated previously. This feature
dominates the interaction with the ambient atmosphere
leading to rather striking results that affect the properties
of the release. In order to carry out the objectives of
the experiments, one needs to be able to describe various
aspects of the released gas such as what happens to the
momentum and energy, how fast the clou¢ expands, how hot

the expanding cloud becomes, and how far it travels.



This report considers three aspects of these
experiments in detail. First, we review the properties
of the gas cloud expansion that results from a point
release that was obtained from a previous study.s"
Second, we develop a model that describes the expansion
of gas released in the venting mode. Third, we apply
the results of the above two studies in order to calculate
the enhancement in conductivity that can be produced by
the release of barium vapor in sunlight as a function of
altitude and the amount of release vapor. The major

part of this report is concerned with the technical

details of these calculations.

We have developed models of the dynamic response
of gas clouds, released in both the point release and
venting modes, when they interact with the ambient
rarefied atmosphere at the hypersonic orbital velocity.
These models are based on a number of simplifying

5 in order to

assumptions first introduced by Stuart
describe the evolution of a stationary point explosion

in the upper atmosphere. The principal assumptions
relate to the form of the velocity distribution within
the cloud and involve a self-similar density distribution

during the cloud expansion. We have added the effect of



the translational velocity at release to Stuart's model
and Lave treated the different geometries and time-
dependencies of the released gas for the two release

modes.

The models apply to an intermediate altitude
regime. This regime is identified by comparing an
important characteristic cloud size with the molecular
mean-free-p .th, A. For a spherical point release,

this size is called the equal-mass-radius, a and

o’
is defined as the radius of a spherical volume of ambient
atmosphere containing a mass equal to the mass of
released gas, Mo. When a, is comparable to A, neither
continuum dynamics nor kinetic theory is appropriate for
describing the interaction of the gas cloud. At lower
altitudes, where A is much smaller than a,. continuum
dynamics or fluid mechanics might be applicable. Flow

of the ambient atmosphere around the gas cloud and the
effects of shocks and waves created in the ambient
atmosphere by the gas cloud would be important. On

the other hand, at higher altitudes where the mean-free
path is much larger than a,, a kinetic theory approach

is required. In this case the majority of the ambient

molecules would pass right through the roughly spherical



gas cloud which is initially traveling at the orbital
velocity while only a fraction of them would strike one
of the gas cloud molecules, scattering it out of the
cloud, thus producing & broad diffuse wake. The
distinguishing feature of our model is the assumption
that in the intermediate altitude regime the ambieat
atmosphere interacts strongly with the gas cloud and is

carried with it, becoming a part of the cloud itself.

Bernhardt6 recently completed a similar study
using a kinetic approach appropriate to the high-altitude
regime. He used the same criteria for defining the
high-altitude regime, a, < 3\, as we adopt in this report.
Because the physical assumptions arpropriate to the two
regimes are different, the model calculations produce
qualitatively different results. As one example of this
difference, the distance that the bulk of an ianitially
spherically gas cloud travels is independent of the
amount of gas released in the high-altitude regime (it
scales only with A) but in the intermediate-altitude

regime this distance scales with a_ and thus depends

o}
on the mass of released gas.

The parameters that characterize the properties

of the gas cloud in which we are iaterested are: the
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scale size, R, of the cloud; the expansion velocity, ﬁ,
of the outer edge of the cloud; the translational velocity,
V, of the released gas; an equivalent 'temperature," T,
determined by the average internal energy per particle,
and the distance, L, that the released gas has traveled
w‘th respect to the ambient atmos~here. In the point
release case, these parameters are given as functiouns of
time since release. The principal difference between
the point-release case and the venting-mode case is that
in the frame of the venting canister there is a steady-
state cylindrically-symmetric distribution of gas down-

stream of the canister.

In Sec. II we discuss several topics "elated to the
snowplow model as applied to point releases. In Sec. II-A
we describe the basic assumptions and equations of the
snowplow model. In Sec. II-B we briefly review and
summarize the results for the point release of a sphexrical
gas cloud at orbital velocity which is treated comprehen-
sively in Ref. 3. We shall make use of the cloud size
as a function of time, R(t), in other sections of this
report and we shall compare the qualitative behavior of
the gas cloud for this case with similar behavior for

the ventiag-mode case to be developed in more detail in

later sections.

o
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The neutral gas cloud and wake expansion models
are based on an assumption that the density distribution
remains self-similar, i.e., that the cloud maintains
its density distribution daring the expansion. One
result of our models is that different density distri-
butions do not result in qualitative changes in the
nature of the solutions. In Sec. II-Cwe modify the

5 model to include the fact that at late times

Stuart
the gas cloud which initially follows a Stuart snowplow
expansion eventually ¢volves into a Gaussian shape
expanding by diffusion. W: treat the effect of diffusion
as if it were superimposed on the expansion process
modeled by the self-similar snowplow exvansion. The
result of this analysis is that a cloud with an initial
constant density profile rapidly evolves into a Gaussian-
like shape and that the Gaussian scale length of the
Gaussian distribution has a time dependence almost

identical to the cloud radius described from the snowplow

model.

In Sec. III we describe the venting-mode model and
the equations that determine the cloud parameters. This
quantitative model conserves the mass, momentum, and

energy of the expanding and moving gas cloud wake consisting
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of the released goas and swept-up ambient atmosy .ere.

The assumptions on which the model is based and the
limitations of the model are discussed. Our model
applies only *o the downstream portion of the wake

and does not provide a uescription valid in the
transition zone between the spherical distribution near
the venting canister and the cy'ind.ical distribution
farthor cownstream. The appropirate conservation
equations are derived. The characteristics of the vented
gas cloud sre determined by the model and a specification

of the parameters associated with the released gas; Mo‘

the rate at which mass exits the canister in kg/s; éo’
the rate at which energy exits the canister in J/s; and

Y, the ratvio of specific heats.

In Sec. IV the results of itho venting model are
described. The wake-model equations are integrated
numerically and an accurate analytic approximation is
derived. In particular, the radius of the wake, the
radial expansion velocity, the axial velocity of the
gas in the wake, the temperature, and the distance that
the gas has traveled with respect to the atmosphere are
obtained. The dependence of the solutions on the

various input parameters is illustrated in a series of

10



figures. It is found thav the analytic expression

provides a good description ot the scaling of these
solutions with ‘he input parameters. The wake-model,

and thus the solutions, becones more valid rar downstream
at large radius in the wake; the model is less valid at
small R. For any particular set of the input parameters,
the wake-model allows a family of solutions correspcnding
to different assumed initial values of the radial expansion

velocity, R , Specified at a small value of radius, Ro.

(o]
The approacn of the various numerical solutions to the
analytic curve at large K is also illustrated by appropriate
sets of figures. As an example of a quantitative result,

it is found that far downstream all solutions have the

behavior R(x) ~ Kx*, where the constant K depends on the

values of the input parameters.

In Sec. V we apply the results of our theoretical
modeling of the expansion of the neutral gas clouds to
the calculation ¢f the change in Pedersen conductivity
that results 'vhen the neutral gas being released is
neutral barium atom vapor. Much ¢f the motivation for
the calcnlations reported here is based on previous
modeling of large barium icn c¢louds released in the

ionosphere from rockets. In particular, the approaca

11
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used here relies heavily on detailed data analyses7 of “
the Spruce ion cloud, a barsium release experiment
conducted on 1 February 1971 at 2352 UT at an altitude
of about 120 km from kglin AFB in Florida. The data
consist o1 both optical and radar data obtained with
an incoherent scatter radar, an HF long-pulse radar,
and by radio-wave propagation through the ion clouds.
These data provide informacion on the electron concen-
tration and distribution and scale size of the w.on
cloud. We combine our recent work on the expansion

of neutral clouds released from orbital velocity in

e e e

both the point release and venting modes with detailed
ion c¢loud modeling performed on the Spruce ion ~loud
in order to csalculate the height-integrated Pedersen
conductivity tna*t can be produced by the release of

various amounts of vapor at a range of alititudes.

In Sec. V-A we consider the deposition of barium
ions from the neutral barium atom vapor. Based on
vhe results of Sec. III-C, we assume that the density

distribution in the barium cloud during the time of ion

g

deposition is essentially a Gaussian distribution. We
make extensive use ur earlier work on the deposition ol

ionizati.> from barium releas~ s conaucted from rockets

12
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in order to determine parameters of the barium ion cloud

in terms of parameters associated with the neutral cloud.

The procedure that we apply takes into account the competing

processes of barium oxidation by ambient molecular oxygen
and photoionization by sunligh;. Thiese effects result
in an altitude-r 2pendent inventory of available barium
ions from a given amount of barium vapor'ind in an
effective ionization time constant associated with the
loss of neutral barium atoms. The model described here
also includes the effect of the time delay before
photoionization begins when the initial density is high
and impedes the transport of the metastable-exciting
radiation to the center of the cloud. The choice of
parameterizations is based on the detailed analysis

of the Spruce ion cloud.

The important parameters for carrying out
conductivity modification experiments are the field-line-
integrated Pedersen conductivity and the transverse
scale size of the ion cloud perpendicular to the
magnetic field. The scaling of these two parameters
witih altitude and amount of gas released is assumed
to vary as the radius of the neutral cloud at an appro-

priate time. The results of the analysis are shown in

13
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Sec. V-B in three pairs of figures, each pair corresponding
to one of the following three cases: a point release

from a rocket, from Spacelab, and a vented release from
Spacelab. The figures show contours of constant perpen-
dicular 3cale size of the ion cloud and constant Pedersen
conductivity in the altitude versus chemical-payload-
weight plane. As a typical example, a 48-kg barium release
from a rocket at 190 km altitude will produce a field-line-
integrated Pedersen conductivity of approximately 30 mho,
several times the ambient ionospheric conductivity, and
will have a transverse scale size just less than 3 km.

If the same chemical payload is released at orbital
velocity, the resulting conductivity is lower by a factor
of 5 from that nroduced by a release from a rocket and

the transverse size of the ion cloud is increased by =a

factor of approximately 2.3.

14
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II. REVIEW OF SNOWPLOW MODELS

The expansion of neutral gas clruds from point
releases in the intermediate altitude regime can be
described by snowplow equations. Point releases at
orbital velocity are described by a model that represents
an extension of Stuart'35 original model. The venting
model described in detail in Sec. III is based on a
modification of Stuart's model that takes into considera-
tion both the orbital velocity and the steady-state
cylindrical geometry. We briefly review the snowplow
model and summarize the results for point releases.

These results will be useful for comparing with the
results of the venting model and will be used in Sec. V
where we calculate the deposition of ionization from a

knowledge of the time variatioi of the cloud size, R(t).
A. Basic assumptions and equations

The central assumptions of Stuart’'s model are
that a spherical cloud of gas, consistiag of released
gas plus swept-up ambient atmosphere, retains a self-
similar or shape-preserving density profile, that the
velocity of the gas is radial, and that the velocity
increases linearly with radius from the center of the

cloud. In the case of release at orbital velocity, the

15
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above assumptions are modified. We assume that the
expanding gas cloud remains spherical in shape and that
its center moves with a velocity 3(t). We also assume
that the gas cloud completely picks up the ambient air
by incorporating all of the atmosphere that crosses its
boundary into the cloud. The cloud does not disturb the
ambient atmosphere exterior to the cloud and no ambient
molecules can pass through the cloud unaffected. The
appropriate equations conserve the mass, momentum and
energy of the expanding and moving gas cloud consisting
of the released gas and swept-up ambient air. The
qualitative results of the model are believed to be
reliable during the early phase of the cloud's dynamics
orior to times when diffusion is the dominant process.
A detailed analysis resulting from these assumptions is

described in Ref. 3.

In the Stuart snowplow model and its extenasion
described above, all lengths are found to scale with a
characteristic length called the equal-mass-radius, L
This length is the radius of a spherical volume of ambient
atmosphere with mass equal to the mass of the released
gas, Mo. In terms of the ambient atmospheric density,

p., the equal-mass-radius is defined by a_ = (3M°/4ﬂp‘ﬁ4.

a o

16

i)




:—v%

This model appears to be appropriate when 3 < aO/A < 30
where A is the ambient mean-free-path betwevn collisions.
At higher altitudes where &, < 3\ a kinetic treatment
would be necessary. At lower altitudes where %, > 30A,
it is difficult to consider the released and ambient
species as being well-mixed, and other gasdynamic
phenomena neglected in the snowplow treatment, such as

shock formation and wave generation, would be important.

We summarize the equations that lead to a specifi-
cation of the snowplow model. The similarity condition

for the mass density, o(?. t), becomes
o(F, t) = [uce)/R3 ()] £(&) (1)

where M(t) is the total mass of the cloud including
swept-up ambient atmosphere and R(t) is the radius of
the cloud. The dimensionless space variable : is given

by
e [T - X(t)]/R() (2)

where i(t) is the three-dimensional position of the
center-of-mass of the cloud and T is any point in
three-dimensional space. EqQuation (1) describes a

gas cloud that retains its density profile while

17
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expanding and translating. The shape function f(f)

has the properties
j;(t)d3t =1 ; (3)
[tf(t)dat =0 . (4)

The second moment is a time-independeant (but shape-

dependent) constant a;

a -./;2f(t)d3t . t (5)

For a constant density profile, f(z) = 3/47 and a = 0.6.

For a spherical shell with all of the mass concentrated

at the radius R(t), f(&) = §(|%] - 1)/47 and a = 1.0.

The gas velocity at any point is assumed to be

given by
V(E, t) = U(t) + R(OEF, t) (6)
where
ey = 9% = X (M

and the dot represents differentiation with respect to

time. Thus the hydrodynamic derivative is given by

DPE.(%);‘»z.v-(s@t-)E (8)

18
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because a point moving such that E is constant moves

with the local "fluid" velocity.

The conservation equation for mass is written

2

%%4-pv.'v’-nan+S(;,t) (9)

where S is a mass source function due to sweeping up of

the ambient atmospheric mass and Dn is a diffusion
coefficient. Snowplow models set Dn = 0 in order not

to violate the density similarity assumption. We will
discuss the effect of diffusion on changing density
profiles in Sec. II-C below. Due to the density similarity

assumption, the mass source term must be given by
S(¥, t) = (M/M)p(T, t) (10)

where M is the rate at which ambient atmospheric mass
is swept up as the cl ud expands and translates. For

spherical clouds wit. ut translation

N = 4«8293 . (11)

With translation, a more complicated expression,
dependent upon model assumptions, is necessary. In
general, with translation, the volume of swept-up

atmosphere, V' = (M - Mo)/oa. is greater than the

19
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volume of the gas cloud, V = 4n33/3.

The momentum equation is written

o(F, t) gr *+ S(F, t) V (F, t) = -Up(F, t)  (12)

where p 1is the pressure in the cloud and the mass
source term accounts for the momentum of the picked-up
atmosphere. The internal energy density of the gas

is given by p/(y - 1) where y is the ratio of

specific heats. The total internal energy of the cloud

is

¢ =/ E-ﬁ-——ly;;i a7 (13)
v
where the integral is taken over the volume of the cloud.
Following procedures similar to those applied by Stuart
as discussed in Ref. 3, the equations goveruning the
translation and radial expansion in the cloud can be

brought to the forms

d -
F i) =0, (14)
3R g (R ~ 3y - U - 3pg (15)

20
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where a is the second moment of f and Pg is the limit

of the cloud pressure approaching the surface from within
and has heen assumed to be spherically symmetric. WNote
that Mu is the total momentum of the cloud and that both

M and 3 are functions of time.

Equaticn (15) shows that the expansion of the cloud
is driven by (y - 1) times its internal energy, proportional

to the cloud pressure, and is retarded by the pressure at

the surface of the cloud. In our model, we take Pg to

be the atmospheric pressure Pg- These equations represent
a quantitative descripticn of the basic snowplow model.
Reference 3 contains discussions of the treatment of

these equations, their relationship to other author's
work, the effects of various treatments of the pressure

at the surface of the cloud, extensions of the derivations
outlined here to incorporate different values of the
molecular mass and v for the released gas and atmospheric

gas.

We can replace the internal energy U, defined by

Eq. (13), in Eq. (15) by using conservation of total

energy, X
M- M, Py
E-U+K.Eo+_p.:_-'r_-_1. , (16)

21
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where K is the kinetic energy given by
K = % /p$2d3r = %(uz + uﬁz) , (17)
v

E0 is the total initial energy of the cloud, (M - Mo)/pa
= /' is the volume of the swept-up atmospheric gas,

and pa/(Y - 1) is the internal energy density of the
ambient atmosphere. Because we are including the
possibility of a nonzero translational vclocity for

the cloud, the volume, y', of swept-up atmosphere may

be greater than the volume, V, of the cloud itself. !

The initial energy of the clcud, Eo’ derives from
the translational velocity of the release vehicle and
from the clLemical and/or thermal energy of the exploding
gas. The chemical energy, initially released as heat,
is transformed into kinetic energy of expansion in a
time scale which is short compared to that of the other

processes in this model. Thus

M

a0 (42 4+ oR2
Eo 0" (uo + aRo) (18)

where Mo is the initial released mass, U, is the initial
translational velocity, and éo is the initial expansion

velocity.

22
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Equation (15) becomes:

J
ana%(ua) = 3(y - 1) [EO-K+ v -V);—%i-]. (19)

Ambient atmosphere has been swept up and compressed by
the cloud and the term (V' - V)pa/(Y - 1) is the portion
of the swept-up atmospheric thermal energy that is
available to drive the expansion of the cloud. If there
is no translation, then V' = (M -~ Mo)/pa = |/ the ambient
atmosphere is not compres=sed and its internal energy

does not contribute to the expansion of the cloud. At
late times (v - V)pa/(Y - 1) approaches a constant,

thus contributing to Eq. (19) in the same manner as Eo.
B. Rasults for point releases from rockets and Spacelabdb

Equations (19) and (14) together with an equation
for dM/dt, such as Eq. (11), can be integrated numerically
to produce the translational motion, expansion, and mass
accretion of the gas cloud. Reference 3 contains the
results of such integratiouns for various values of the
input quantities Eo, Y, a, and ﬁo. Here we show only
typical results in order to illustrate the nature of the
solutions and present analytic expressions that approximate
the behavior of R(t) for R » ao and have the correct asymptotic

behavior as t + =,

23



Figure 1 shows several examples of R(t) obtained
by numerically integrating the equations. Both the
radius and the time are scaled by the equal-mass-radius.
The time scale has been drawn under the assumption that

R0

L]

1 km/s for all cases. The heavy solid curve is

the nomin:1 case with vy = 1.4 and a = 0.6 corresponding
to a uniform density profile. The dashed curve shows

the influence of the assumption of an uxtreme density
profile, that of a spherical shell with all the mass
concentrated at the outer edge characterized by a = 1.

It does not expand as fast as the constant density
profile because the available energy drives =211 particles
at the same velocity. Likewise, the outer nge of a

gas cloud with a density profile more peaked at the center
with a < 0.6 would expand more rapidly than shown by the

solid curve.

The four thin solid curves show the effect of varicus
values of y. As y decreases, the number of degrees of
freedom increases and a larger fraction of the energy is
stored as internal energy per particle and less is available
for kinetic energy of expansion. The curve labeled y = «
corresponds to the assumption that none of the available

energy is stored as internal energy. Regardless of the

24



value of Yy asscciated with the released gas, as R >> 1
the c¢loud radius approaches a curve corresponding to

the value of y of the ambient atmosphere (as shown in
Ref. 3) because the majority of the gas clouds' particles

are atmospheric particles.

The dotted curv.: represents the original Stuar:
snowplow without the effect of translational velocity.
This curve corresponds to a release from a rocket in
which the translational velocity is small compared to
the initial expansion velocity ﬁo‘ All of the curves
initially have the behavior R = ﬁot. The snowplow
without translation begins to decrease its rate of
expansion as R + 2, and the cloud has picked up an
atmospheric mass comparable to the mass of released

gas.

The case of release at orbital velocity is qualita-
tively different. Figure 1 shows that ﬁ increases from
its initial value before R = 2, and reaches a maximum at
around R = a before decreasing. The explanation for
this behavior depends upon the fact that the velocity of
the atmosphere relative to the shuttle corresponds to
a large kinetic energy per particle amounting to 5.1 eV
for oxygen atoms. This energy input rapidlv exceeds the

original chemical energy, auoég/z, beiore the swept-up

25
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mass approcches Mo or R ~ a,- The result is an increase
in the ianternal energy of the cloud leading to its rapid
expansion. This rapid =:ransion leads to a rapid rate
of sweeping up of atmospheri¢ mass. The translational
velocity of tge gas cloud drops rapidly with a resultant

significant,feduction in the rate of energy input to the

cloud. 3

Figure 2 shows the typical behavior of a 100 kg
gas release at orbital velocit, at 200 km aliitude.
The time and length scales are given in seconds and
kilometers, respectively, based on the derived value
of 3.65 km for the equal-mass-radius. The dashed
curve for the cloud radius is the same as the heavy
solid curve in Fig. 1. The solid curve labeled tempera-
ture corresponds to the average internal energy per
particle with an assumed mass of 20 atomic masses. The
curve shows the initially cold expanding gas rapidly
heating due to the atmospheric energy input reaching a
maximum of 5600°C by 2 s aftrr release. This rapid
heating leads to the rapid expansion and subsequent
cooling of the gas cloud. The temperature asymptotically
approaches the ambient atmospheric temperature. The g

distance traveled is /. = ftu(t‘)ct‘ a:! is shown by the
o}

o

26



broken curve. The cloud at first coasts at orbital
velocity but rapidly decelerates when R ~ a, reaching
2/3 of its asymptotic travel distance within 3 s. Note
that by 4.5 s after release the cloud diameter

exceeds the distance traveled while the cloud is still
expanding rapidly and its forward motion has nearly
stopped. The fact that the cloud size rapidly exceeds
the distance traveled suggests that the model assumption
of a spherical cloud shape is justified because any
asymmetry that may be introduced by the translational

velocity rapidly becomes less important.

Indeed, the fact that after a few seconds the
gas release at orbital velocity appears to behave as
a stationary point release of greater initial energy

can be used to obtain an accurate approximation to

R(t). In our model, when u(t) < ﬁ(t) or MR > Mouo' we
take M = 4nR2paﬁ and then V' - V = AV ceases to grow
and M(t) may be written
M(t) = M_+ 27 o R + avp (20)
(o} 3 a a

where the last term is a constant generally smaller
than the first and much smaller than the second. The

total energy available for driving the late-time

27
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expansion may be written

P
Ep = B + ?‘§‘I ‘ {(21)

where Eo is given by Eq. (18). The last term can be
shown to be smaller than the first by writing it as
(3&V;4wa2) [M°C§/Y(Y - :)] where Ca is the atmospheric

sound speed.

Thus, for Mé greater than Mou Eq. (19) can be

ol
written

d vey o !
aR 3= (MR) = 3(y - 1) (Eq - K) (22)

wvhere ET is a constant given by Eq. (21) and K is the
kinetic energy given by Eq. (17). As t =+ o, yu(t) = 0,
M(t) - M R%/ad. and K « 2a¥2%. If we define a non-

dimensional time by

s = Rot/ao (23)

.

where Ro is the initial expansion velocity, we find
that for large s , the solution of Eq. (22) has the

asvmptotic form

R » aOCso‘4 as § » ® (24)

where
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1/5
1/5 | 2E
c - [&(1__1_1] T , (25
4y aM R®
00

The first term has the numeiical values 1.123 and 1.201
for vy = 1.4 and 5/3, respectively. If we neglect the
small term proportional to AV in Eq. (21), then the

coefficient C can be written

ety - 1115 2 1/5
(o}

By direct comparison with the numerical integration of
Eq. (19) from s = 0, we have found that an analytic

expression of the form

. 1/2
& £\0-8
R(t) = aC (:2-) - 0.44 27)

\ 0

provides an excellent approximation to R(t) for R » a
with C defined by Eq. (26) for both the stationary ana
orbital release cases with u, = O and 7.8 km/s,
respectively. We shall make use of the expression in

Eq. (27) for R(t) later in this report.
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C. Snowplow model with diffusion

At late-time, gas clouds released in the atmosphere
have a Gaussian density profile and expand by diffusion.
In this section we explore how rapidly the density profile
of a spherical point release can change in profile from
the self-similar profile assumed in the snowplow model
to the Gaussian profile at late time. Ve find that this

change can take place surprisingly rapidly.

In this work we modify the snowplow model to include
the fact that at late time the gas cloud can be modeied
by a Gaussian density profile diffusing into the ambient
atmosphere. The r+ .lt is a model which initially
follows a snowplow expansion and evolves into a Gaussian
diffusing cloud. Obviously, we must relax one of the
central assumptions of the snowplow model, specifically
that the cloud retains a shape-preserving density profile.
We will treat the effect of diffusion as if it were
superimposed on the expansion process modeled by the
self-similar snowplow expansion. In a self-similar
expansion the size of the cloud is given by R(t), a
time-dependent scale length of the cloud. If the self-
similar shape were a spherical constant-density protfile,
for example, we would take R(t) to be equal to the radius

of the sphere.
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We use this same R(t) to scale the continuity
equation for mass, Eq. (9), but now we retain the diffusion
term. We restrict this discussion to the stationary
point release case for which E(?, t) = ?/R(t), the fluid
velocity of the gas is v = TR/R, and R(t) is the charac-
teristic scale length of the expanding cloud if there
were no diffusion. The last term on the right-hand side
of Eq. (9) includes the effect of sweeping up ambient
mass according to Stuart's original model and is given

by Eq. (10).

By making a suitable change of space and time variables
we can define a function f[z(r, t), TD(t)] which is analogous
to the shape function of the self-similar model. If we

define Tp by

/’t 4D_dv'
T, = ; (28)
P R2(¢)
D
implying that diffusion begins at t = tD, then the
density can be written
o(F, 1) = [uct)/m3ce) t[EE o, ] . (29

With these substitutions Eq. (9) can be simply written
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= 1 g2
3T d Ve f (29)

where we have used the following:

V.V = SR/R ;

R D
Vo = l% Vef
R
v% = vt
R
o8 _  pa o2
T Rr/R° ;
3TD } 4Dn

Equation (29) is the diffusion equation for f(g, 1),

which has the solution

exp[- (& - E‘)z/rn]
7 (30)

£(Z, 1) = /d”i‘f(i‘. 0)

(er)

In terms of this function we may write the density at

any time t > tD as
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exp[»(% - %é)z/r (t4
D

+ M(t 1 3>, ,>.

p(r, t)-—g—)— dr“p(r-,t,) 375

R3(t) Up _[ D [ﬂrD(t;‘l

where RD = R(tD) and MD = M(tD). For L)) << 1 we have
the limit of 1ittle diffusion and the density reduces to

that given by the self-similar model,

M
p(r, t) = —
M,

“ldw

)

\
or o(r, t) = = £(r/R, 0)
R
At long times after diffusion has been turned on, the

similarity function f apprcaches a Gaussian distribution

with an expanding radius and constant volume:
28, 1) + (r1p) " Pexp(-€2/1p) (31)

-+ ®
as TD .

In order to illustrate the effect that diffusion in
£ has on an assumed density distribution, we have applied
Egq. (30) to two specific examples. The first is a uniform
density out to a finite expanding radius; we refer to

this profile as a flat-top distribution. The second is
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an expanding spherical shell with all the mass concentrated

at the surface of the shell. For the flat-top distribution

£f(g, 0) 3/4m ; £ <1

f(s, 0)

]
o

g >1

and for the spherical shell
f(g, 0) = 6(§ - 1)/4rm .

The normalization has been chosen so that each contains a

unit volume.

We have found that the profile approaches a Gaussian

profile more rapidly if the Gaussian with which it is

compared has a Gaussian radius of the form (8 + 13)1/2 i.e

25, 1) » [r8 + 1) 2exp[- €28 v ] L (32

In order to illustrate the change of the flat-top and
spherical-shell distributions toward the Gaussian form
given in Eq. (32) at various values of Tp, We Lave

renormalized both the radius and density by defining

z = £/10.693 (8 + 1 )1?
8z, 1p) = 18 + 1] %% 25, 1y (33)
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The limiting value of g(z, TD) for large Tp is
exp(- 0.693 zz). The scale factor 0.693 is chosen
so that g(1, «) is 0.5

Figures 3 and 4 show g{(z, TD) for various values
of Tp for the flat-top and spherical shell initial
distributions respectively. The value of 8 in the
scalings given by Eq. (33) are different for the two cases.
It is appropriate that B be unequal to zero because in
both cases the initial shapes have finite spatial extent.
We have chosen B so that g(1l, 1) is approximately equal
to one half; for the flat-top B = 0.5 and for the spherical
shell B = 0.75. The larger value of B for the spherical
shell results from the fact that all of the mass is
initially at £ = 1 for the shell while the mass is

distributed over § < 1 for the flat-top.

The vertical dashed lines in Figures 3 and 4 indicate
the position of the initial radius in the newly-scaled
radial coordinate 2z. For Tp greater than one, the scaled
position of the initial radius continues to move to the

3

left and approaches z = 1.2 15 as Ty + @ indicating the
increase in size of the cloud due to diffusion as

shown by the Tp = © curve. For the flat-top in

Figure 3, the horizontal dashed lines indicate the
height of the original flat-top in the newly-scaled

density with amplitude [m(p + tDﬂa/zf(E, 0).
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Examination of Figures 3 and 4 indicates that the
density distributions are approaching Gaussian-like
shapes for Ty > 0.2 and 0.75 for the two cases, respectively,
and have essentially the asymptotic shape given in Eq. (33)
for Ty > 0.4 and 1.0 respectively. We will discuss

specific evaluations of Ty below.

The approximation of f(§, TD) by its limiting
form [Tr(B-+TD)]'i x exp[- £2/(8 + 1p)] is equivalent to
approximating the density distribution of the cloud by

a Gaussian density profile

o(r, t) = M(t) [naz(t)] =3/2 axp [- r2/a2(t)] (34)

with a time-dependent Gaussisn radius, a(t), given by
2 2
a®(t) = R(t) [B + 1p(t) (35)

where Tp is given by Eq. (28). Although the actual shape
at early time is not Gaussian, in the case of the flat-
top distribution we find that the distance at which the
density is 1/e of its value at r = 0 is within a few
percent of R(t) for Tp(t) < 0.5 and of course is
indistinguishable from a(t) given by Eq. (35) for

TD > 0.5,
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In the preceding, we have discussed a procedure for
introducing diffusioa within the framework of a snowplow
model. The effect of diffusion is to transform an initial
self-similar profiie for the density into a Gaussian
profile. The treatment so far does not depend on the
the time-dependence of R(t) which we take to be determined

by the snowplow model without diffusion.

With a normalized time defined by Eq. (23), we
define a function ¢(s) such that

R(t) = ao¢(s) . (36)

With u = 0 we have AV = V' - ¥V = 0 and the original
Stuart snowplow equation has the form of Eq. (22) with
ET = amoég/z and K = aMﬁZ/Z. Our normalizations for

¢ and s are different from those of Stuart; with

our normalizations ¢ satisfies the differential

equation

o & [+ o ).z 4 [1 - @+ 6% (a¢/ds)?].

The solution of this equation has the following

properties for large and small s:
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¢(s) + s for s << 1

2.2
$(s) -+ (6.25 lf$¥L) g0-¢ for s >> 1

At early time the cloud expands with the initial expansion

Ld

velocity Ro while at later time the cloud radius is pre-

0.4

dicted to expand as t At very late time when the

snowplow description is no longer appropriate, the cloud

expands as to'5

due to diffusion. It is apparent that
once the appropriate value of y of the relzased gas is
specified, the snowplow model for the expansion of a

gas cloud determines the time-dependence of the radius
R(t) of the cloud in terms of the two key parameters ao

and Ro.
Once the functional dependence of ¢(s) is known,
then we may define a normalized diffusion function T(s)

by

S
T(s) -/ - (37)
1

The diffusion parameter T defined in Eq. (28) can be

expressed in terms of T(s) as
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Tp(t) = [?(S) - ?(sD)] (38)

a R
oo

where s = ﬁo t/ao and the diffusion is assumed to commeace
at t = th- For a gas with vy = 5,3 which is appropriate
for barium atom vapor, we show the resulting normalized
diffusion function T(s) in Fig. 5. The solid curve is

the correct value of T(s) only as long as ¢(s) is given

by the snowplow model. If the snowplow mcdel were to

be turned off at a specific value of s, then ¢2 in the
denominator would be a constant and ¢ would increase
linearly with s. Examples are shown by the dashed curves
in Fig. 5 if the snowplow were stopped at s = 18 and

46.

As an example of the time scale in which the profile
can change from a flat-top distribution to a substantially
Gaussian shape when T ™ 0.2, we 1se parameters associated
with a 48 kg barium release (called Spruce) at 190 km
altitude. For this clcud, detailed modeling7 has shown
that I, = 0.052 km®/s, a_ = 1.26 km, and R, = 1.15 km/s
so that the numerical value of the coefficient of the
brackets in Eq. (38) is 0.144. Thus Ty has the value 0.2
when T(s) = ?(sD) = 1.4. Figure 5 shows that if we take

Sp as small as 1, D could reach 0.2 as rapidly as
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t = sao/‘,.‘»o = 4.4 s with s - 4. Our detailed ar;alysis7

nf the observed profile of the neutral cloud has indicated
that 1t is in substantial agreement with the scels size
and profile obtained by adding diffusion to & snowplow
description of the expansion in radius of the neutral

cloud.
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III. VENTING MODEL AND EQUATIONS

In this section we dascribe a quaniitative model
that conserves the mass, momentum, and energy of the
expanding and flowing gas in the wake downstream of a
canister traveling at orbital velocity and venting
gas. In the frame of reference moving with the canister,
the flow is in steady-state. In accordance with snowplow
models, we assume that all of the ambient air that
encounters the wake and crosses its boundary becomes
incorporated into it. The wake does not discurb the
ambient atmosphere exterior to it. The quantitative
results of this model are believed to be reliable beyond
one wake radius downstream of the canister and prior
to times when diffusion is the dominant process. The
reasonableness and implications of these assumptions are

discussed below.

In the point release problem treated previously
we found that all lengths scale with a characteristic
length, the equal-mass radius, a,- Likewise, in the
steady-state wake problem all lengths scale with a

different characteristic length a.
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This length is defined as the radius of a cylindrical
volume of ambient atmosphere that contains a mass per unit

axial length equal to ﬁo/va, i.e.,
a = (/v ot . (39)
o a"a

where ﬁo is the rate at which mass is being released
from the source. It is also the radius of a disk moving

at the source (shuttle) velocity, V in the ambient

a’
atmosphere through which the ambient mass flux is equal
to MO.

As in the previous section, we take this venting
model to be most appropriate in an intermediate altitude
regime definedby 3 < a/X < 30 where A is the ambient
mean-free-path between collisions. At higher and lower

altitudes the assumptions of the model are less justified

and require different approaches.

Figure 6 shows the altitude variation of the number
density, n, mass density, Pg: and mean free path, A, of
the ambient atmosphere based on the CIRA 1972 model
atmosphere. The solid curves correspond to a moderate
exospheric temperature Tex = 1200°. The mean-free-path

1

\ = (n3) °~ is derived from an assumed typical collision

- 2
cross section o = § x 10 19 m independent of species
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or temperature. The variation of the atmospheric density
for more extreme values of the exospheric temperature, 700°

and 2000°, is shown by the dashed curves.

Figure 7 shows contours of constant characteristic
length a in the altitude versus mass-venting-rate plane.
Because the horizontal axis is logarithmic and a « io*’
all of the sclid curves for Tex = 1200° have the same
shape and are displaced horizontally from each other by
an appropriate amount. The two dashed curves drawn for
a=1km indicate the shapes of the contours for Tex = 700°

and 1200°, respectively. These curves can be used to

estimate the value of a for different model atmospheres.

Figure 8 shows contours of constant values of a/A
in the same altitude versus mass-venting-rate plane.
Again, the solid curves all have the same shape and
represent appropriate horizontal displacements. Ve
note that the intermediate altitude regime, 3 < a/X < 30,
covers a broad range of mass-rates and altitudes of
interest for the experiments proposed for Spacelab. In
this intermediate regime, ambient atmosphere is picked
up and mixed with the gas cloud, and neither the high-
aititude kinetic approach nor the low-altitude coantinuum

fluid dynamics approach is valid.
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Following the approach of our previous work
outlined in the previous section, we have further

modified the treatment of Stuart5

and assumed a
self-similar expansion of the cloud as a wake behind
the source. We assume that the density of the wake

is given by
o(r, x* = £(£)N(x)/RZ(x)V(x) (40)

where x 1is the axial distance in the direction
downstream of the source, r 1is the radial distance from
the x-axis, R(x) is the radial extent of the wake at

a distance x downstream, £ = r/R(x), f(§) is tae
dimensionless self-similar radial density profile, ﬁ

is the mass flux in the wake through the disc of

radius R(x) centered on the x-axis, and V(x) is the

x-component of the fluid velocity at axial distance Xx.

As in the point release problem, an ad hoc¢ assumption
is required about the fluid velocity flow field. VWe
have assumed that the x-component of the velocity, V(x)
is independent of radial distance and that the radial

velocity component is given by

r dR
V. = V(x) RGO ax (41)
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Equation (41) insures that the velocity at the surface

of the steady-state wake is parallel to the surface.

This model assumes that the only interaction

between the gas cloud wake and the ambient atmosphere

is the sweeping up of all the ambient atmosphere encountered

by the cloud. Shocks and diversion of fluid flow in the

surrounding atmosphere external to the cloud are neglected

in this model. We also neglect the effects of ionization

and condensation within the wake.

The imposition of contraints on the velocity as
in Eq. (41) and on the density profile in Eq. (40) is
somewhat artificial as they have been imposed to make
the problem mathematically tractable. These constraints
lead to some inconsistencies between the model and the
actual wake of a steady-state release. As with all
mathematical models, it is hoped that the necessary
inconsistencies are small enough that they do not
destroy the value of the model. In this case, the
model assumption about the velocity in Eq. (41)
obviously cannot be satisfied near the point of
release for nearly all modes of gas release. In fact,
as we shall see later, Eq. (41) cannot be valid near
the point of release for any configuration because of

conservation of +ass, momentum, and energy.
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The equations for local conservation of mass and

momentum are

= () + T+ (61 = sx, 1) (42)

and

~~
s
(]
~v

é% (PV) + Ve (o) + ¥p = T(x, 1)

In Eq. (42), S(x, r) is the mass source function due to
the sweeping of atmospheric mass and the mass injection
from the shuttle source. In Eq. (43), p is the gas
pressure within the wake and f(x, r) is the momentum
socurce due to the swept-up ambient atmosphere having
velocity Va in the x-direction in the rest frame of

the shuttle.

The velocity vector V, defined above, is the
fluid flow velocity in the rest frame of the shuttle
and is not the velocity of the releasedgas with
respect to the atmosphere as in the previous section.

The corresponding conservation equation for energy is
2 uelov? o0 [Fuelov?e p)] = atx, r) (49)

where
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u = —fey (45)

is the internal energy density, y is the ratio of specific
heats, and Q(x, r) is the energy source term due to the
swept-up ambient mass with velocity Va and the energy

injected with the mass from the shuttle source.

Because we are solving for a steady-state solution,
the time derivatives do not contribute in Egs. (42), (43),
and (44). The global equations for conservation of mass,
x-component of momentum, and energy are obtained by
integrating these equations over the volume of the wake
envelope bounded downstream by a plane of constant x
as shown by the dotted line in the sketch below. The

result is
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M(x) = i + Vo mR2(x) = M (1 + R2/a®) ,  (46)

R
M(x)V(x) - paV§1tR2(x) - szpa +[ p(x, r)2rrdr = 0 ,(47)
0

R

1 .2 2 1 2 )

_(ua + E"ava"pa)va"R +V(x)/ (u+-2-o|V| + p)2nrdr
0

(48)
= E
(o]

where ug, and p, are the internal energy density and

pressure of the ambient atmosphere and E0 is the rate
at which the source is injecting energy along with the

mass injection MO.

The ambient temperature Ta is related to Py and

u, by

kT

--——a = -
Py m Pg = (Yo = 1) u, (49)

where k 1is Boltzman's constant and my is the mass
of the ambient particles. Thus, ug *p, in Eq. (48)

can be written
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By using the definition of the characteristic length,

a2 = ﬁo/npava, Eq. (45) to relate p and u, Egs. (40)

and (41) for the radial dependence of p and V, and
defining

R
gg - j{ u(x, r) 2rrdr, (50)
0

Eqs. (47) and (48) can be written

2 kT

- . R a dU
MV - M =1V + + (y = 1) =— =90 s (51)

o a ( a vama) dx

.« R Vi Yo KT, du . 1 =,.2 .2 .
—Mo —2 3 + ¥ -1 m—— + ‘Yv a—f + 5 M(V + aR ) = Eo. (52)
a a a
where
1
« -/ £(£)e%2nEdc (53)
0

is a dimensionless invariant determined by the self-

similar radial density profile and

R=V — (54)
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The radial component of the momentum conservation
Eq. (43) is treated analogously to the virial treatment
of Stuart.5 By taking the dot product with T on both
sides of Eq. (43), where ¥ is the component of position
perpendicular to the x-axis, integrating over the volume
shown in the previous sketch, and differentiating with

respect to x, one obtains.
4 @ _ - QE _ 2
oR ax (MR) = 2 (¥ 1) ax TR P, (55)

The set of Eqs. (46), (51), (52), and (55)
determines the four quantities R, ﬁ, V, and dU/dx and

constitute the venting model.

50



IV, RESULTS OF THE VENTING MODEL

In this section we illustrate the properties of
the solution of the equations derived in the previous
section. We restrict our discussion to the special case

Yy T Yg = y and will not distinguish between the mass of

the gas species, mg, and the mass of ambient species, m, ,

by setting them both equal to 20 atomic mass units as
representative of a mean uolecular weight in the thermosphere.
The choice of the molecular mass has no impact on the
dynamics when Yo = yg but enters only when determining

an average ''temperature" defined as

mV

= - a_du
T=(r-1 = & - (56)
A, Analytic characteristics of the solution

In order to examine the nature of the solution of
the venting model equations, we first note that the ambient
energy density and internal energy appear in the same

combination in Egqs. (51) and (55). Hence, we define

U' = (y-1) g‘xi - R%p, . (57)

By using this definition of U' to eliminate dU/dx from

Fy. (52) and rearranging terms, the energy equation may
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be written

M, KT, /o\2
_IT 't = R X _2_._2'(5) -
7= vu Eo + 7-1 Va = 3 (Va 'S
1 o v2/a\2 o2 1 22
+ -2- [MoVa (g_) -MV ] - §' Gniﬁ . (58)

As R+o, V-»Va and the second term on the RHS approaches a
constant, contributing to the energy balance in the same
manner as éo' This terms arises from the compression of
the ambient atmosphere as it is swept up and serves as a
source of energy to drive the radial expansion. Each

of the terms in the square brackets increases as R2 as

R+« a.d the leading terms exactly cancel leaving a constant
as the dominant contribution of this term to the energy

equation in this limit.

The structure of Egqs. (51) and (55) is considerably
simplified if we define new normalized independent and

dependent variables

y = Rz/az; (39)
q = MV/MV_; (60)
x = afi2h2/i2 v2 (61)
A = U'/i{ova . (62)
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Equations (51) and (55) can now be written

qQ=y -4, (63)
E‘A'
Y iy *© 2q4, (64)

respectively. Unfortunately, the energy equation does not
simplify greatly. However, by multiplying Eq. (58) by ﬁ,

using Eq. (46), defining the constants c and b,

2Eo kT,

c = —2y , b= —2 (65)
MV m vV
O a a a

and using Eq. (63) appropriately, the energy equation (58)

can be written uniquely with no terms of the form q2, yz ,

or gy,
Zrat = o+ (r)y + A yawa) + 4% - x (66

The three equations (63), (64), and (66) determine
the taree functions q, 4, and x as functions of y (and thus R).
The equations in this form do not contain R explicitly and
the dynamics do not depend explicitly on the value of a.
In terms of these normalized functions, the axial velocity,

V, and temperature, T, defi:ed by Eq. (56),are given by
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a 1l+y a y+1 ; (67)
v M, Ry My o2 (y=4)(by+a)
T=s\x*v &) T =% Va o0 68
M a (y+1) ¢
where the last form is an explicit function of y once a
solution A(y) of the equations has been obtained. C

One consequence of the venting model and the above
equations is that solutions d¢ not exist below a minimum
value of R which depends on the various paramecters.
Accordingly, solutions can onlyv Le obtained for finite
initial values of y. For any given set of gas release
parameters and a sufficiently large value of y (or R), the
model allows a family of solutions corresponding to different
values of P (or w; see Eq. (61)). The range of allowed
values of R (or x) for a given value of R (or y) is

determined by the energy equation. The maximum permitted

value of x is given by Eq. (66) with A=0, or

< 2yb, .
X = ¢+ (1+c+—-—Y_1) y

Cn the other hand, if Eq. (63) is used to eliminate q
fron Eq. (66), we obtain another form cf the energy

equation
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y+i1 ,2 _ 2(1-yb) 2y _ -
Y1 A ¥-1 yA + ¢ +(1+c-+Y_1 b) y -x=20 (69)
which is quadratic in ¢&¢. The requirement that A be real

puts a lower bound on the permitted value of ¥ in order that

the discriminant be positive itor sufficiently smal: y.

The model equations have been integrated numerically
for a variety of different allowed initial conditions. All
of these families of solutions asymptotically approach the
same behavior at large radius far downstream in the wake
where the model assumptions are more valid. Some of the
allowed values of initial conditions at small R are within
reasonable ranges and some are not, but all such solution
curves are less valid at small R because the model assumptions

are less justified.

Before illustrating the numerical solutions we
obtain the asymptotic form of the solutions and give
an analytic expression for the expansion velocity that is
an excellent approxiration to a particular numerical
solution. By direct substitution into Eqs. (63), (64), and
(66) or (69), it can be verified that the following forms

represent asymptotic solutions of t.ae equations for the first
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two terms in an expansion valid as y+» (R+»):

2
A*AO*T*O(T) : (70)
y
x ~ 2y +2: B+ 0(%) ; (71)
o) o y
. . 1+k L) .
Vv, (1-(1_b)y)+ O(y2) ; (72)
m .2 K-b 1 )
T-Ta+EVa-——-y+0(y—2) : (73)
where < = Lél (1 + ¢)
A= (< *B) ¢ (1-b) (T4
= 2Y
B c/2AO + (Y-l b + 1) AO/Z . (75)

All solutions of the model equations have the
asymptotic form given by Egqs. {(70)-(73) for sufficiently
large y. However, the analytic expressions obtained by
keeping only the first two terms in the expression (71)
and setting A=-ao in Eqs. (67) and (68) are indistinguishable
througn three significant digits from a particular set of

rumerical solucions for y>1. By remembering the definition
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for x, Eq. (61), we can write an explicit expression for

R,
2 2,2 _.1/2
R=% vaS—-;le 2t B0, (76)
R%/a” + 1
where
K%/2 = (28, /a) /2. (77)

The expression (76) for ﬁ(R) has an asymptotic expansion

for R>>a,

2 S
: K a a a

identical through the first two terms to the asymptotic

expansion of all the solutiomns.

The parameter b, defined by Eq. (65), is a normalized
ambiernt temperature and has the numerical value b = 0.00679
for Ta = 1000°K and Va = 7.8 km/s. Hence it makes only a
very small change to the value of Ao and B defined by Egs.
(74) and (75). However, the form of Ao given in Eq. (74)
with the term (1-b) in the denominator indicates that this

venting model cannot be used to describe the gas cloud
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produced by slowly moving canisters. Indeed. it is probably
inaccurate for velocities approaching the ambient thermal
velocity. Thus this model must not be used to describe
verting releases from sounding rockets which have velocities
in this range. This breakdown in this moldel is associated
with the compression of the atmosphere that results from

our description of the atmospheric mass pick up.

The parameter c, defined by Eq. (65), is related to
the stored chemical or internal energy per unit mass. For
reasonable values of ﬁo/ﬂo. ¢ << 1 and does not have a
maio~r affect on the solutions. The detailed analyses of
barium releases from rockets7 indicated that the best value
of the initial expansion velocity of the barium vapor with
a flattop distribution is R = 1.1 km/s. This value
corresponds to EO/Mo = 0.6 ﬁg/z = 4 x 105 J/kg. Ve use
this same value for ﬁo/ﬁo in the case of a vented release
and obtain ¢ = 0.0131., With these values for b and ¢, the
quantities Ao, B, and sza/z have the values tabulated in

Table I for the indicated values of Y.

B. Evaluation of the solutions

The equations for the venting model have been
integrated numerically. The next twelve figures show
examples of representative soluticns for various gas

release paramevers and assumed initial conditions. 1In

58



L .
- -

TABLE I. Numerical values

Paraneter y = 1.1 Yy =1.4 Yy = 5/3
A, 0.0532 0.1523 0.2108
B 0.1528 0.123 0.140
K2

5 Va (km/s) 3.60 6.09 7.16

order to illustrate the sensitivity of the solution to
a change in the value of each of the various parameters,
we have compared the solution curve produced by the
changed value of a single parameter with a "nominal"
case corresponding to a standard set of parameters.
Table II lists the values of the parameters for which
representative solutions are shown. The first column
of values represent the values associated with the
nominal solution. Solutions associated with the other

values are illustrated in the figures.

The parameter CO is related to the stored
chemical or internal energy and is given by C0 = /c Va'

It is the velocity at which all the mass would travel
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TABLE II. Venting model parameter values.

Paraneter Nominal Other
Value Values
C, (km/s) 0.89 3.09
a 0.5 1.0
éo (km/s) 3.23 2.23, 4.23, 1.93, 3.76
Y 1.4 1.1, 5/5
T, (°K) 1000 0

if all oi the stored initial internal energy were
converted into kinetic energy. The nominal value

is appropriate for the specific energy associated with
bariuim vapor of 4 x 105 J/kg. The larger value of Co
corresponds to a value of specific energy twelve times
larger than for barium. If applied to hydrogen gas,

it corresponds to the energy content of gaseous H at

770°K and is 8.5% greater than the mean thermal velocity.

The parameter a is the density distribution
parameter defined for this cylindrical geometry case
by Eq. (53). The values 0.5 and 1.0 correspond to
a flattop distribution and cylindrical-shell

distribution, respectively. (In the point release
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case, a has the value 0.6 for a flattop distribution

as discussed in Section II.).

In Fig. 9 we show the nominal solution for R(R)
by a heavy curve and the solutions corresponding to
the alternate values of Co and a by lighter solid lines.
In this and the subsequent eleven figures, the heavy
curve always correspnnds to the nomiual case. The
other curves represent solutions corresponding to
changes in only one or two of the parameters. These
curves are labeled by the non-nominal value of the
parameter. At the top of the figure the nominal values
of these parameters are given. The valves of all
parameters not shown explicitly are those given as
the nominal values in Table II. Each figure thus
emphasizes the sensitivity of a solution to the change

in a particular parameter.

Returning to Fig. 9, the nominal curve is
specified by the choice éo = 3,23 km/s at R = Ro = g,
In this and the next eleven figures the scale length
a, defined by Eq. (39), is represented by A. This
value for ﬁo is the value produced by the expression
(75) evaluated at R = a. The analytic expression (76)

is indistinguishable from the numerically-integrated
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solid curve. The two other curves behave like expression
(78) for R >> a (in practice, R 2 2a) with the appropriate
evaluations for K and B given by Eqs. (77) and (75). For

C0 = 3.09 km/s the expansion velocity is only slightly
greater for a given value of R/a due to the small adcitional
amount of initial energy available for expansion. Note

that there is maximum in R(R) for R > a. If a larger

initial value for ﬁo at R, = a had been chosen there

would have been no maximum for R > a. We will illustrate the
effect of the choice of éo on the solution in the next figure.
For a mass distribution more peaked towards the outer

edge, the expansion velocity approaches that given by the

a = 1.0 curve corresponding to a cylindrical shell.

The expansion velocity is less in this case because the
energy available for expansion is distributed to all of

the particles. The expansion velocity of the outer edge
corresponding to a density distribution more peaked in

the center with a < 0.5 would be greater than that given

Q-

by the nominal curve, varying as a

Figure 10 shows solutions resulting from different
choices for the initial value of ho' The values ‘llustrated
correspond to the nominal value *1 km/s. Both curves
quickly approach the nominal solutic# curve which is well

approximated by Eq. (76). For R > "u, the solution is
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fairly insensitive to the particular choice of éo for
reasonable values of this parameter. The asymptotic
expansions given in Egs. (70)-(73) and (78) depend only
on the released gas parameters and are incdependent of
ﬁo. For the ﬁo = 2.23 km/s case, a smaller fraction

of the total energy is contained in the Kinetic energy
term and a larger fraction is contained in internal
energy with the result that initially the gas has a
higher temperature, as we shall see below. This

excess thermal energy rapidly expands the radius until

the expansion velocity approaches the nominal solution.

Figure 11 illustrates the dependence of ﬁ(R)
on the assumed ratio of sperific heats, y, according
to the venting model equations. The two dashed curves
rerresent solutions appropriate for the release of
monatomic (y = 5/3) and polyatomic (y = 1.1) gases.
In general, as Yy decreases, the number of degrees of
freedom increases with the result that more energy
is stored as internal energy and less is available
for kinetic energy of expansion. The initial value
of &o = 1,93 km/s for the vy = 1.1 case is the value
obtained from Eq. (76) evaluated at R = a. The thin
solid line with éo = 1.93 km/s illustrates the affect

of a change in vy on the resulting expansion velocity.
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Equation (76) has the value 3.82 km/s at R = a with
Yy = 5/3. This value is below the minimum permitted
value o7 éo at R = a aucording to Eq. (69). Rather
than choosing a numerical solution with a larger
initial value for ﬁo’ we have shown a numerical
solution beginning at Ro = 1.1la with a permitted
initial value for r'ao of 3.76 km/s given by Eq. (76)
evaluated at R = 1.1a. With this choice, the two
dashed curves are indistinguishable from the analytic
expression (76). Regardless of the value of Yg associated
with the released gas, when R >> a the effective value
of vy of the gas mixture will tend towards Ya associated
with the ambient atmosphere as shown in Ref. 3 for the
point release case. The appropriate value ranges between

1.4 and 1.67 depending upon the altitude of release.

The dependence of the temperature, T, defined by
Eq. (56) in terms of the average internal energy per particle,
on the gas release parameters is given by Eqs. (68) and (73).
An accurate representation for the nominal case for R >a
is given by Eq. (68) with A = Ao‘ Figure 12 shows T(R) for
the nominal case and the dependernce on different initial
values of ﬁo' A smaller initial kinetic energy of expansion
results in a higher initial temperature. The temperature
resulting from an assumed expansion into a cold atmosphere
is shown by the curve labeled Ta = 0°%K. The presence of

a warm atmosphere has only a very small effect on the dynamics
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of the expansion due to the small value of the parameter b.
The primary effect is to raise the temperature of the gas
cloud mixed with ambient atmosphere by Ta for R > 2a as
shown explicitly in Eq. (73). Figure 13 shows the effect
of vy on the temperature. The greater the number of degrees

of freedom, the lower the temperature.

Figure 14 shows the axial velocity of the gas plus
air mixture in the frame of the canister. As tbe gas cloud
encounters the ambient air, it comes to rest with respect
to the atmospherc which streams by the canister at speed
Va = 7.8 km/s. The analytic..! dependence for the nominal
case is given adequately by Eq. (67) with 4 = Ao. Figure 14
shows that the velocity is rather insensitive to the choice

of 1'20. Equation (67) with & = A indicates that the velocity

of the wake with respect to the atmosphere varies as

1+

\' 2V -V~ 0 v for R>a (79)
wake a L+ RE/aE a <

which is rather insensitive to gas release parameters because

Ao is small.

The shape of the plume behind the canister is obtained

by recognizing that dR/dx = %/V and integrating
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x=/ YR gr . (80)
R(R')

By using the approximate expressions (67) with A = Lo and

(76), we obtain the explicit relationship

1 3

= 1 2, 2
X - X, = K2 (R(R /a® + B)

(81)

e
- (28, + B) a 4n [R/a + (8%/a% + B) j)

where Xy is an arbitrary constant of integration. Asymptotically,

for R >> a, the radius of the plume is found to vary as

2B
R(x) ~ “(ax)? rl + (28 + B) &%ﬂ%l -0 (12-)] (82)
L R%/a R™ s

with K given by Eq. (77). Far in the wake x ~ Vat and

the radius of the plume increases as t0°5. This asymptotic tire

dependence is different from the to'4 dependence for the

spherical point release case because of the different geomet:v.

Figure 15 shows the normalized plume radius as a
function of normalized distance downstream of the canister
for various values of the gas release parameters. The
constant of integration hes been chosen in each case so that
R=a (= 1.1a for vy = 1.1) at x = a, The half-power
dependence of radius on distance is obvious for R » 2a;
the value of the y-axis intercept of the extrapolation of
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the straight-line portion of the curves is equal to K.
Figure 16 shows *the same set of curves on a linear scale.
Note that the vertical axis is expanded 9.3 times the
horizontal axis. Figure 17 illustrates the sensitivity
(or insensitivity) of the plume radius to assumed initial

conditions.

We expect that the wake model pnrovides an adequate
description of the characteristics of the vented gas once
R > a. We expect that this criterion occurs wi. .in a
distance of order a downstream of the canister. We
have no model for the transition region from the vicinity
of the canister to the cylindrical region described by the
wake model. Figure 14 shows that the released gas has lost
half of its orbital velocity by the time this wake model 1is
applicable and is decelerating rapidly. The distance. L,
that the released gas travels with respect to the atmusphere

as it grows in radius from Ro to R is

R
V. . (R')
Lu/(va-V)dta / wake " 4R
R(R")

2
o]

2(1 + 4 ) 3

2 2
- o R+ (R + Ba™)
a—? n

, 2
R+ (Ré + Baz)/
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where we have made use of Egs. (76) and (79) for tlre
approximate expression. Because for large R we have

R ~ xO'5 and R ~ tO.S’ we find that this model predicts
that the distance traveled is not finite but increases as
¢n t. This result is different from the spherical point

release model result which has the gas cloud traveling a

finite distance,

Figures 18, 19, and 20 show the normalized distance
traveled by a parcel of gas located a distance x downstream
in the wake for various gas release yarameters and initial
conditions. In these figures. L 1is arbitrarily assigned
the value a at x = a. The three cur s in Fig. 19, all
drawn for the same gas release parameters, indicate that a
slab of gas initially having R = a at X = a, travels 0.2a
furtuer (less) if the initial expansior velocity is 1 km/s

less (greater) than the nominal value.

In summary, the wake model derived here produ:es
quantitative estimates of the primary characteristics from
a continuously venting gos release traveling at orbital
velocity. All lengths scale with the characteristic scale
length 4. Far downstream in the wake the cvlindrical plume

-

radius expands as tO.a. the shape of the plume as a fuanction

5

of distance x downstream is R ~ K(ax)o' , the axial velccity
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falls as az/R2 and the distance traveled increases indefinitely
as &n t. A. a position x ~ 100a downstream, the typical

plume radius is~12a and the distance traveled with respect

to the ambient atmosphere since R = a is AL ~ 4a. Close to

the canister when R~ a, the expansion velocity falls rapidly
from~3 km/s and the temperatur: rapidly cools from several

thousand degrees %o the ambient a'mospheric temperature.

These results are dependent upon the snowplow model
used to derive the aprropriate equations. The most suspect
assumptions are those relating to the self-similar radial
density distribution and the uwniformity of the axizl velocity
v th radius. It would seem reasonable to expect that both
the mass pick-up and momentum pick-up in the wake are probably
more concentrated toward the outer edges than assumed by this
m>del. Near the canister, the outer edges of the plume
would »e swept ba:k more rapidly than the central portion,
varticularly in the lower altitude end of the intermediate
altitude regime. This effect is partially modeled by the
o = 1.0 curve corresponding to the assumption that all of the
released and picked-up mass is concentrated at the outer
adge. The result is a small redu:tion in the radius of
the plume. Far downstream where the axial velocity with
respect to the atmosphere is small, vwake << ﬁ, R >> a,
and p ~ Py the results of this model for a flattop

distribution, a = 0.5, should be more valid. Of course,
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at very late time, the released gas in the plume expands
by diffusion. The radial distribution can be assumed to
evolve from a flattop to a Gaussian shape during the snowplow

expansion as outlined in Section II-C.
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V. CONDUCTIVITY ENHANCEMENTS PRODUCED BY BARIUM RELEASES

Barium releases from rockets have been conducted in
the ionosphere worldwide primarily to measure ambient
electric fields using small releases (< 4 kg) at high
altitude (> 200 km) and to produce enhancements in the
ionospheric electron concentration using large releases
(16 kg to 320 kg) at lower altitudes (< 200 km). The
properties of the larger releases have been studied
extensively using a varioty of radar. optical, propagation
path, and rocket probe techniques. As a result, many
characteristics of these releases, such as the time development
of the scale size of the neutral cloud, peak electron
concentration, and distribution of barium ions perpendicular
and parallel to the magnetic field are well documented

and the behavior is understood.

These large barium releases have produced major
enhancements in the ionospheric field-line-integrated
Pedersen (FLIP) conductivity. The ability to create such
large FLIP conductivities is of interest for a variety
of prcposed Spacelab exper ments. In this section we first
briefly describe the process of creating ion clouds from
released barium atom vapor. We then apply the results

of Sections II and IV for the expansion of gas clouds

ot |
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released in both the explosive and venting modes to the
calculation of ion deposition from releases at orbitzal
velocity. The results of these calculations are estimates
of the scale size and FLIP conductivity enhancements that
can be prcoduced by barium releases from rockets and
Spacelab as a function of altitude of release and amount

of releaed vapor.
A. Ion deposition for point barium releases

In Section II we summarized the results ot a snow-
plow model that describes the expansion of a spherical gas
cloud in an intermediate altitude regime released either
at orbital or negligible velocity. A barium thermite
release typically produces an expanding cloud of barium
atom vapor that exits the canister in 0.1 - 0.2 seconds
and thus this event can be called a int release. Our

understanding of the process by which :zarium ion clouds

are produced from the expanding vapor cloud and the resulting

p operties of the ion cloud comes in part from a detailed

analysis7 of the Spruce ion cloud resulting from a 48 kg

barium release at 190 km altitude, and in part from observations
of many barium releases ranging in size from 16 kg to 320 kg

and released aut various altitudes between 150 km and 255 km.

The description of the ion deposition as well as the
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quantitative values for important parameters for the process
are taken from Ref. 7. Here we summarize this process and
describe the modeling adopted to obtain quantitative

estimates for other altitudes and chemical payload weights.

As the barium atom vapor expands, it encounters
the ambient atmosphere. The outer radius expands initially
with velocity ﬁo' We assume that diffusion changes an
initial flattop distribution into a Gaussian profile
whose (Gaussian scale length increases according to the
snowpiow model. The number of barium atoms is depleted
with an exponential time constant, Ty by two conpeting
processes: oxidation by ambient oxygen molecules and
photoiouization from excited metastable states. The
cross section for the absorption of solar radiation that
excites eround-state barium atoms into the metastable
states is large. Photoionization commences only after a
time dealy, ti' when the barium cloud has expanded
sufficiently so that the metastable exciting radiation

is able to permeate the cloud.

As the barium ions are created, they bccome tied
to the magnetic field line at their position of creation
and cease their motion transverse to the magnetic fi-1ld,
B. After the passage of several Ty time periods, the

bulk of the ionization has been created. The number of
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ions on a given magnetic field line remains constant beyvond
this time and the distribution of this field-line content,
Nc(r), with radius transverse to B 1is a bell-shaped curve.
We represent the ciharacteristic size of the ion cloud by

a scale length, a which is the distance transverse to

n
B in which NC has fallen to e_1 of its central peak value.
The process described above has been modeled in
detail in Ref. 7 for the Spruce ion cloud. The resvits
of that model are the determination of appropriate values
of a number of the required parameters so that the model
produced results consistent with the various measurements.
Table III presents a tabulation of the values of these

parameters.

A ropular barium thermite reaction that produces

barium vapor is
tBa + CuO —» BaO + Cu + (T ~ 1) Ba

where 7 is a number typically between 1.7 and 2.5. For
Spruce with § = 2.5, the 48 kg chemical payload weight
produced 3.56 kg of barium atom vapor which corresponds
to a vaporization efficiency of 7.4%. Quantitative
determinations of this efficiency are diffuclt to obtain
to mucn better than a factor of 2 and typical reported
values range from 5% to 12%. The model value reported
here is consistent with measurements of the properties
of the neutral and ion clouds.

e
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TABLE III. Parameters for the Spruce ion cloud.

Parameter Value Units

Inputs to Model

1. Mass of barium vapor, Mo’ 3.56 (kg)

2. Vaporization efficiency 7.4%

3. Fraction of atoms ionized, f, 0.42

4. Ionization time constant, T 10.0 (s)

5. Total ion inventory 6.5 (x 1024)

6. Atmospheric density, Py 0.45 (kg/kms)

7. Neutral diffusion coefficient. D_, 0.052  (km%/s)

8. Equal-mass-radius, 2. 1.26 (km)

9. Initial expansion velocity, ho. 1.15 (km/s)
10. Onset of photoionization, ti' 1.9 (s)
Derived Quantities
11. Neutral cloud :adius, R, at t = ti 1.59 (km)

12. Neutral cloud radius, a, at t = ty

* Ty 3.8 (km)
13. Transverse scale size, a_, 2.7 (km)
14. Field-line content. N_, 2.4 (101 7m~2)
15. Peak ion density at 100 s 1.7 (10%%m73)
16. Ion cloud length at 100 s 7.8 (km)

17. Initial Pedersen conductivity 27 (mho)




The fraction, f, of the atoms that are ionized is
equal to the ratio of the photoionization rate, v, to the
total loss rate of barium atoms. The photoionization

time, 1/v, has been consistently reported by Haerendel

et a1.8 of the Max-Planck Institute to be of order 19 s.

~

Rosenberg et al. of AFCRL report a time closer to 30 s.

We choose 1/v = 24 s as being within 20% of the correct
value. The cxidation rate is proportional to the molecular

oxvgen concentration, kno , and was estimated by Rosenberg
)

9 . . .
et al.” from observations of a series of barium releases

at different altitudes. Because g is considerab., - lower
2
in the 1972 CIRA atmosphere model than in the U.S. Standard

Atmosphere used by Rosenberg et al., we have had to use

-~

a relatively large value for the rate rnonstant, k = 1.25

x 10’16 m3/s. in order to match their observed loss rates.

The fraction ionized is

and has the value for Spruce given as entry 3 in Table III.

The time constant for the loss rate of barium atoms is

)
T. -l_sé= 24 . e s (86)

1 v o+ ino 1 + 3 x 10_15no
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and has the value given as entry 4 for Spruce. The total
number of oarium atoms is NT = Mo/mBa where Mg, 1s the
atomic weight of barium. The total ion inventory given
as entry 5 for Spruce is fNT'
If we neglect transport of barium ions perpendicular

to the magnetic field, the conservation equation for

the ions can be written

d

Dy 3
3T Y 3z DiVig T VBp(T.Z.t) (87)

where Via is the velocity in the z-direction assumed to
be along ﬁ, nb(r,z,t) is the concentration of barium
atoms, and r is the radial coordinate perpendicular
to B. Based on the discussion in Sec. II, we take

the distribution of barium atoms to be an expanding
Gaussian of the form

N -t*/T,
s expl-(r? + 25)/R%)1 e L (88)

nb(r,z.t) =
(7R (1))

where t* 1s the length of time that the barium atoms have
been exposed to ionizing radiation. By integrating Eq. (87)
along the magnetic field we obtain an equation for the time
dependence of the radial distribution of the field-line
content N (r.,t) = /n.dz
C i
3N (r.t) VN -t*/T,
C i

2] 2]
—3 = — exp[-r°/R°(t)] e . . (89)
TRT(t)
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If we start the i1onization process at time, Li’ after release
we can integrate Eq. (89) in order to determine the radial

profile of the field-line content of the ion cloud,

t
2,.2,., -(t' - t.)/.
Nc(r,t) - vNT / exp[-r“/R(t")] i iger,

e
2,
x4 TR(t"')
i

Entries 6-9 in Table III are related to the neutral
cloud expansion. The first two are atmospheric numbers for
190 km altitude and determine the equal -mass -radius. As
discussed previously, it is appropriate to delay the start
of photoionization until the neutral cloud has expanded
sufficiently so that the metastable exciting radiation can
permeate tne neutral cloud. For the Spruce ion cloud, this
delay time was considered a free parameter and adjusted until
the time-dependent characteristics of the ion cloud matchea
the available data as described in detail in Ref. 7. The
radius of the Spruce neutral cloud at the delay time ti was

1.26 ag 71,59 km as given in entry 11.

If we define a as the size of the Gaussian radius
of the neutral cloud at the time t = ti + T4 >fter release,
i.»., at cne ionization time constant after ionization has
been assumed to begin, we may write the field-line content

as

(90)



fNT
Nc(r,t) == I(r,t) (91)
Ta

where

Hlml
[\&)

t 1
I(r,t) = / exp[-r2/Re(t)] (' - ty)/Ty

5 e dt' . (92)
R™(t")

vy

I(r,t) represents a normalized field-line content. The

normalization is chosen so that

x©

5 I(r,t)2nrdr = (1 - exp[-(t - tl;/Tiﬂ . (93)

which approaches one as t + « .

The result of the integration in Eq. (92) combined
with Eq. (91) is the field-line content as a function of
radius transverse to the magnetic field. From the profile
we determine that for Spruce the radius at which the content
has a value et of its central peak value is a, = 2,66 km. The
value of I(0,») is 1.65 which when combined with Eq. (91)
determines the pear. fielid-line content through the center

of the cioud as given by entry 14 in Table III.

Fer a point release at orbital velocit -, v

neglect the translation of the neutral cloud and vse tre
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approximation that the ions are deposited as though the
neutral cloud were stationary. As pointed out in Sec. II,
the distance that the neutral cloud travels is ‘inite and
quickly becomes small compared to the rapidly expanding
spherical cloud. Hence the same procedure outlined above
can be applied for this case with an appropriate specifi-

cation for R(t) as is discussed in Sec. V-C.

B. Ion deposition for venting-mode barium thermite

releases

Thermite reactions have been successfully used
in order to produce lithium atom vapor trails released
in a venting mode from both rockets and satellites.lo To
date, there have been no releases of barium atom vapor
via a thermite reaction in the venting mode. Thus, we
have no data regarding the nature of the ionization
enhancement that can be produced by such a release. 1In
this section we calculate porperties of such an enhancement
by adapting the ion-deposition procedures applicable :o

the Spruce ion cloud to the trail-like neutral-cloud expansion

modei resulting from a venting-mode release.

In principle, the procedures are similar but
the details of the calculations are different due to the
¢ylindrical geometry and the motion of the neutral cloud

in the axial, x', direction. We assume that there is a
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critical radius, Ri’ to which the cloud must expand before

nhotoionization and loss of barium atoms commences. (We

[R—

will discuss the criteria for determining this critical
value as a function of altitude anu mass-venting-rate,

Mo’ in the next section.) In the rest-frame of the shuttle,
the venting-mode model presents a steadv-state shape for

the cloud-wake, R(x') with the origin chosen so that R(O0)

Ri’ in which the gas has an axial flow velocity V[R(x')]

V'(x') which approaches Va as X' - », In the (x,y,2)
rest-frames of t..e atmosphere, the shuttle travels in the
negative x-direction, which we shall assume to be perpen-

dicular to §, with velocity VS = -V At time t = ti, we

a
choose the origin of the x-axis to be located at the

position where R = Ri. Due to the conrdinate transformation

x' = x + Va(t - tl) ,

the cloud radius, Rc, in the rest frame of th:® atmosphere

is
Rc(x,t) = R(x') = R[x + Va(t - ti)] . (94)

After the passage of many T, time pericds, the

i
bulk of the ionizat-.on has been deposited and is uniform
in x. Henceforth, we will concentrate only on the x = 0
pusition aud examine the t‘me dependence of the ion

deposition on field lines as the expanding neutral trail

sweeps by that position. The cloud radius at x = 0 becoues
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a function of time only;
S = A S (2}
hc(t) R[Ja(b ti)] . (25)

Note that in this steady-state problem, the time ti
rerreserts a critical time such that at x = 0, Rc = Ri
at t = ti; it does not represent a time delay since

release as in the point release problem.

During the ion depcsition we model the barium
cloud trail as having a Gaussian density profile in the
radial direction with a Gaussian scale length Rc(t) = R(x')
given by our velf-similar snowplow expansion for the
reasons discus :d in Sec. II-C. The barium atom concentration

that enters Eq. (87) at x = 0 for t > ti is uow written

Ne ~t*/1,
o 2
n,(y.2,t) = '12 exp[-(y~ + 22)/R;]e h (96)
VTR
c
where &T = h‘io/mBa is the rate at which rarium atoms are

’ being emitted from the source,z is parallel tn §,and §
is perpendicular to x and R, This expression is the
cvlindricali equivalent of the exvres-ion given in Eq. (83)
for the spherical case. With the expression (96) for ny .
Eq. (87) can be integrated along the magnetic field to
get the rate of change of the transverse distribution in

v 07 the field-line ion content,

(o7
I

B,




.
Loy _

W (y,1) Vi
ot

. 2,.2 ~tr/Ty
exp -y /Rc(t)]e . (97

Ve V{R_R, (1)

In this equation, the length of time, t*, that the barium
atoms have peen expos.d to ionizing radiation is not equal
to t - ti as “1 the point-release case, but is equal to
the time tha<t i1t has taken the cloud to grow from radius
R} G radius RC,

-RC(t) '
t*(t) = / TQ.R_'_. , (98)
R R(R")

i

wh e ﬁ(R) £ (dR/dx')V 1is g.ven by the venting model

results discussed in Sec. 1IV.

The uniform-in-x transverse profile of the field-
line ion content, Nc(y), is obtained by irtegracving
Eq. (97). It is convenient to change variables and integrate

with respect to t* by making use of the relations

. 4R U

dx a
at " VAR d@ - V(R) (99)

wnere the first. second, aad third edualities follow from
Eq. (98), the definition of R(R), and Eq. (95), respectively.

With this substitution, v=2 obtain
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N ® expl- 2 R'2 *) - t*
Ny - / PI-y*/R'“(t*) - t8/1,] 44 (100)
¢ /A R'(t*) T
' a o0
t
where R'(t) = R[(x'(t)] and x'(t) =_[ Vdt' is the axial
o]
position of a s.ab of released gas at time t after R = Ri'
If we define a' as the radius of the wake at one
time period Ty after being exposed to ionizing radiation.
a' = R'(Ti) ) {101)
we may write Eq. (100) as
3
NC(Y) = — I'(y) (102)
V. /T a
a
vhere 1'(y) is 2 normalized field-line content;
[ exp —IyE/RP(ey -ty ]
I'(y) = a' D dr' . (103)

0 ¢4
The normalization is chosen so that

j[ I'(y)dy = /7 a°

V]

which is the same value that would result if I'(y)were
exp(-y2/3'%).

In ocrder to determine the prcperties of such
a release we need to carry out the integral in Egq. (103).
The venting-mode model determines the function R'(t")
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once a specification of ﬂo (which determines the charac-
teristic length a) and Ri is made. For the Spruce ion
cloud, the detailed modeling7 resulted in a value for

the radius of the neutral cloud of 1.59 km = 1.26 a,

when photoionization began. For this venting mode model,
we take Ri = 1.59 km. For the spherical point release
with a flattop distribution, a cloud radius equal to

1.26 a, implies that the barium atom density, MO/(4HR?/3)

= pa/2, was one-half the ambient atmospheric density.

We apply this same criterion in the venting-mode model

case,

which reduces to

2 _ oy .2
VRi = Z\aa

Examination of the numerical integration of the

venting mode equations indicates that criterion (104)
for the nominal case occurs at Ri = 1.69 a. Thus, forh
the venting-mode equivalent of a Spruce-like point
release at 190 km altitude with Ri = 1.59 km, we have

a = 0.94 km which corresponds to ﬁo = 9.7 kg/s. For

these same conditions we find that a' = R'(Ti) = 10.9 km.

We have carried out the integral in Eq. (103)
using these values, and have found that I'(y) is a bell-
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shaped curve that has a peak value I'(0) = 1.56 and has
fallen to 0.57 = (1/e)I'(0) at y = 0.57 a'. Hence, a
venting-mode reiease that produces barium atoms at the
rate of 9.7 kg/s at 190 km altitude is calculated to
produce a cylindrical trail of barium ions having a
characteristic scale of a, = u.57 a' = 6.2 km in the
transverse direction and a maximum field-line content of

1.56 fR /¥ /7 3= 1.84 x 1017 m2.

C. Scale size and magnitude of conductivity

enhancements from - :kets and Spacelab

In Secs. II, III, and IV we have discussed
models that describe the expansion of neutral gas clouds
released in an intermediate altitude regime in both a
point release mode at both negligible and orbital
velocity and a» v=nting-mode at orbital velocity. In

Secs. V-A and V-B we have described the application of

the results of the neutral cloud modeling to the calculation

of the deposition of ionization on magnetic field lines
resulting from: a) a point 48-kg barium thermite

release (Mp = 3.56 kg) from a rocket at 190 km altitude;

and b) a venting-mode barium thermite rclease (ﬁo = 9.7 kg/s)

at orbital velocity at 190 km altitude. The procedures

described for the former case produce results consistent

with various detailed measurements made of such a release as
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described in Ref. 7. The procedures described for the
venting-mode case are derived from criteria establishe-
in the point-release case, but there are no data availabie

for comparison.

In this section we derive the field-line-integrated
Pedersen (FLIP) conductivity that results from the ionization
enhancements that are created and describe how we model
the characteristics of the conductivity modifications
produced by releases of different magnitudes at different

altitudes.

The FLIP conductivity enhancement due to the
deposition of ionization from barium thermiie releases

is defined by

o

e(z)n,(2)
2 (h) = £ / — 4z (105)
p B 1 + ez(z)

where z is the coordinate along ﬁ, ni(z) is the distribution

of ion concentration along the magnetic field line that

passes through the peak value of n,(z), €(z) = [Q'r(z)]-1

where Q = eB/mBa is the barium ion gyrofrequency and t(2)
is the altitude-dependent ion-neutral collision time,

and h is the altitude of the peak in the ion concentration.

Henceforth we will adopt a nominal value of Q = 35 g1

5

appropriate for a 5 x 310 " T magnetic field.

&7
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The ion-neutral collision time can be obtained
from measurements of the mobility of varium ions in

nitrogen gas11 resulting in

s (106)

where En is an effective neutral concentration in

particles/ms,

(107)

In deriving Eq. (106) it has been assumed that the collision
cross section varies inversely as the square root of

the temperature and that the ccllision cross section for
oxygen mclecules and atoms is the same as it is for

nitrogen molecules. The fact that the lighter oxygen

atoms are less efficient in stopping a heavier barium

ion is expressed by the appropriate Langevin factor,
(1 +m, /mg )Y (1 +my, /m)"% ~0.8
Ba N2 Ba’"0 ) !

where m and m, are the masses of the nitrogen molecules

No
and oxygen atown respectively.

. ta

The distribution of ionization along the magnetic
field through the peak value is governed by Eq. (87) with
the right-hand-side evaluated at r = 0. As discussed in
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Sec. V-A, after the passage of several Ty time periods
(typically of order 1 minute after release) most of the
ionization has been deposited on field lines. The

extent of the distribution of ionization along field

lines is still small at that time compared to the atmos-
pheric neutral-density scale-height Hn’ Hence, the value
of the FLIP conductivity in Eq. (105) resulting from the
deposition of ionization on field lines can be appcoximated
by

Ep(hr) = % N mho (108)

1 + ¢ 1l + ¢
r

waere Er is evaluated at th: altitude of release, hr, 1d
NC is the peak field-line content in m-2 through the ;
cen’.er of the cloud given by :
fNT
N. =N (0.») = 1,65 —5 (109)
[ (] _"52

for point releases where Nc(r,t) is defined by Eq. (91), and

N = NC(O) = 1.56 —— (110)

for venting-mode releases where Np(y) is detined by Eq. (102).
Note that I:JT/Va is the number of barium atoms that the
source emits pev unit length and f is the fraction of
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these atoms that are phctoionized.

The numerical coefficients in Eqs. (109)

and (110) were derived on the basis of calculations

appropriate for the nominal 190 km altitude releases

described earlier (M_ = 3.56 kg and Mo = 9.7 kg/s,
respectively). We have not carried out the detailed
ion deposition calculations indicated by Egs. (92)
and (103) for releases of different amounts of barium
vapor at different altitudes. Instead, we approximate
the field-line content produced by other releases by
the expressions (109) and (110). In these expressions,
NT and ﬁT depend directly on tlie amount of released
vapor or the rate of vapor release, respectively, and
f, given by Eq. (85), depends on the altitude of
release. The scale sizes of the neutral clouds one
time period 1, after photoionization,a and a', depend
in a ccmplicated way on both factors as described

below.

By combining Egs. (109) and (110) with Eg. (108),
we nbta.n expressions for the FLIP conductivity as a
function of amount of released gas and altitude,

£
T (u,) = 1.68 x 102 £~ _ T mho (111)
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€
T (n) = 2.82 x 10721 % T

mhoc (112)

for the cases of point releases, and venting-mode releases,
respectively, with a, a', and V, expressed in km, km, and
km/s, respectively. NT and &T are the number of harium atoms

and number of barium atoms per second, respectively.

Equation (27) in Sec. II-B provides an excellent
analytic approximation to the neutral cloud radius, R(t)
for R > a,- For the cas- of stationary point releases,
we take for the characteristic size of the neutral cloud
at one time period, 15 after photoionization commences,

the expression

1/2

1.15 T, 0.8
1.2 a_ ||——2 + s, - 0.44] km (113)

"

a
a'O

where a, is in km, Ty is given by Eq. (86), and Si is a
parameter reflecting the time delay before the onset of
photoionization. We assume that photoionization commences
when the optical depth of the cloud to the metastable-
exciting radiation apprcaches one. This assumption is
egquivalent to a critical value for the product of the

tarium density times the cloud radius or
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3M 0
p.R, = °2 = 0.34 kg/km (114)
4 Ri

where the numerical value was obtained from the Spruce
case. If we use Eq. (27) with Si = ﬁoti/ao in oruer to

evaluate Eq. (114), we obtain

= 1.25
Si = (0.44 + Zpaao) (115)

where paao is expressed in kg;kmz. This value usad in
Eq. (113) determines the dependence of a on mass of

released gas and altitude.

For the case of a point release at orbital velocity,
we take

1/2

0.8
a=2.68a (—-—-l + si) - 0.44 Kkm (116)

which is larger than Eq. (113) by about a factor of 2.3

Ag .in by applying the criterion (114), we obtain

e 1.25
S; = (0.44 + C.4 p_a ) : (117)

The expressions (115) and (117) are not accurate whenever
the ~orresponding critical radius Ri < a,. This condition
occurs only atove a critical altitude depcnding on MO when
Si # 0.6 and 1s much smaller thaa the term 1.15 Ti/no ta
which it is added. Hence this approximation to a does not
lead to significant error.
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In the case of a venting-mode releas¢, Eq. (76)
can be integrated in order to obtain time as a function

of wake radius which provides an implicit R(t):

2

- 2. 2
K Va(t - to) = R(R%/a

+ B + a(2-3)an(r/a + (R%/a2 + BYY] (113)

where to is an arbitrary constant of integration. This
equation cannot be inverted *to obtain R(t) implicitly but

we have found that the 2xp:ession

1/2
K2V |

. )
R(t) = a — t + si + 0.2 - n y t + si

(119)

wa.th a in km and K2Va = 12.2 km/s provides an adequate
repres :ntation for the radius for the nominal case for

R > 1.2 a with Si = 1.24. Because Si and t are additive,
the time t in this equation can be interpreted as the time
lapse after photoionization commences if we scale Si
properly with Pg? in order to reflect the critical time

to reach a critical radius Ri. The criterion (114) in

this case reduces to

i
p,R, = =g = 0.34 kg, /km? (120)
1 1

ar




with G expressed in kg/kmz. The middle expression is

an approximate expression which is reascnably accurate
for Ri > 1.2 a. By solving this quadratic equation for

(Ri/a)2 in terms of Pad, using this value in Eq. (118)

(@}
(9]

and adjusting to so that Si = 4. when ui,’a = 1,69 as
for Spruce, we obtain the following expression for Si
for the venting mode case,

R, (R? 1/2 [Rj (Rg )*
Sl = —; —2 + B + (2 - B)QDL—{ + \—2— + B -1.17 . (122)

‘a
Equation (119) then defines the characteristic size of

the neutral cloud wake as a' = R(Ty).

As discussed in Sec. V-A, the transverse scale
size of the ion cloud field-line content defined as the
half-width a- (1,€) of the maximum value is given as

a, =0.7a (123)

in “he case of point releases and

a, = 0.57 . (124)

whe
in the case of venting-mode releases.

Figures 21-26 show contours of constant value:
ot the transverse scal- size, a,, and FLIP conductivity,

Z%. for the three release mode cases. The shaded portions
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of these figures represent regions in which the snowplow
models used, applicable oniy to the intermediate altitude
regime, are not valid. The contours should not be used
in the shaded regions because their actual form is
qualitatively different from those shown. Fortunately,
the alloweqd regions correspond to regions of many

interesting suggested experiments.

As a typical result, a 48 kg barium release at
190 km altitude will produce a FLIP conductivity of approx-
imately 30 mho, several times the ambient ionospheric
conductivity, and will have a transverse scale size just
less than 3 km. The extra energy available in the shuttle
release causes the gas to expand faster resulting In the
barium icnization being spread over a larger area. The
correspondingly lower density of ionization results in
lower conductivity. If the same amount of chemical
payload is released from shuttle, the resulting conductivity
is lower by a factor of 5 from that produced by a release
from a rocket and the transv>rse size of the ion cloud

1s increased by a factor of approximately 2.3.

As time passes, the condicions envisioned by
tuis modeling change and the distribution of ionization
both parallel and perpendicular to B changt .. After

about a minute following release the ionization clouds
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that are produced have the characteristics that we have
described. Beyond this time, the distribution c¢* ioniIzation
along the magnetic field is governed bv Eq. {87) with the
right-hand side equal tc zero. The z-component of the

ionization veloc. .ty is given by

2

v, =V + g1 +k(Te4-T91 az

LR A
iz nz : (ni' (125)

where Viz and g, are the components of (ue acutral wia.

velocity and gravity paraliel to ﬁ, respectively, Te and

Ti are the electron and ion temperatures. respeciively,

and 1 is the ion-neutral coliision time given by Eq. (106).
The resultinsg evolution of the distribution parallel to 3
as a iesult of neutral wind, gravity and presstre gradients

in an exponencially varying atmosphere whose effective

sumber density, n, defined in Eq. (107), varies as
n{h) = n(h,) exp[-(h - h)/H i (126)

has been discussed i+ detail in Sec. 4 of Ref. 7.
Initially the disiribution is Gaussian, then the

p2ak density descends in altiiude and the distribution

in altitude evolves into a Chamvman-like .ayer with the
density falling off rapidly on the unders<ide and
expchentially on tha top side. An analytiical solution of

Eq. (87) for ni(z,t) with Vig given by Eq. (125) has been obtained
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that describes the evolution as a function of time for
varicus models of altitude-dependent neutral winds. By
analytically integrating the solution, the remarkable
result was obtained that at a later time when the peak
in *he ionization density has descended to altitude h,

the FLIP conductivity has the simple value
Z (n) =Z (ho)expl-(h - h.)/B]

We remark that this fully-time-dependeat result obtained
in Ref. 7 does not require that z be in the vertical
direction, and that the winds can be either constant or

alti:ude dependent with an exponential profile.

In the direction transverse to the magnetic
field, the situation is far more complex. A neutral
wind blowing across a plasma gradient leads to the

12 The result is

well-known gradient-drift instability.
that the coherent picture of a conductivity modification

no longer applies because the ionization striates. The

typical time scale for point releases from rockets between

150 and 250 km for striations to onset is 5 to 20 minutes.

Simple theoretical modeling indicates that this onset

time scales with Za /vn where 7 is a factor that depends

on the magnitude of the conductivity enhancoment and
typically lies between 5 and 20. Hence, cou.:epts to
affect ionospheric and magnetospheric current flows by
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conductivity enhancements such as we have been describing
can probably only b» planned for the first 10 minutes

following release.
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Fig .re Captious

FIG. 1. Cloud radius vs. time for various values
of the ratio of specific heats, vy, and density profile
parameter, a. Translational velocity at release is 7.8

km/s except for the curve u=0.

FI1G. 2. Temperature, radius, and distance traveled
vs. time for a 100 kg gas release at orbital velocity at

200 km altitude.

FIG. 3. The evolution of the normalized density
distribution, g(z, TD), from an initial flat-top to a
Gaussian as a result of diffusion for several values of
the diffusion parameter TD'
FIG. 4. The evolution of the normalized density
distribution, g(z, tD), from an initial shell to a
Gaussian as a result of diffusion for several values of

the diffusion parameter p:

FIG. 5. Normalized diffusion furction T (s) for a
gas with y=5/3 in terms of which the diffusion parameter

Tp is defined according to Eq. (38). The dashed curves
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show the values of T(s) if the snowplow were stopped at

s=18 and 46 respectively.

FIG. 6. Number density, n, mass density, p‘,and
mean—~free-path, A, as a function of altitude based on the
CIRA 1972 model atmosphere. Note the logarithmic altitude
scale. The solid curves correspond to an exospheric
temperature Tex = 1200°; the dashed curves correspond to

- (o} o
Tex 700" and 2000,
FIG. 7. Contours of constant characteristic lengtn,
a, for a CIRA 1972 model atmosphere with T, = 1200° in
the altitude versus mass-venting-rate plane. The dashed

curves show the shape of the contours for Te‘ = 700° and

2000°.

FIG. 8. Contours of coanstant a2 in the altitude
versus mass-venting-rate plane. The daslked curves show

the shape of the contours for T = 700° and 2000°.
FIG. 9. Radial expansion velocity as a function
of normaliczed radius for different density profiles and

specific internal energies.
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FIG. 10. Radial expansion velocity as a function
of normalized radius for different assumed initial

velocities.

FIG. 11. Radial expansion velocity as a function
of normalized radius for different values of the ratio

of specific heats.

FiG. 12. Temperature, defined according to Eq. (56),
as a function of normalized radius for different assumed
initial expansion velocities and ambient atmospheric

temperature.

FIG. 13. Temperature, defined according to Eq. (56),
as a function of normalized radius for different values

of the ratio of specific heats.

FIG. 14. Axial velocity in the rest frame of the
canister as a function of normalized rasdius for different

assumed initial expansion velocities.

FIG. 15. Normalized radius versus normalized axial
position for various values of gas release parameters

plotted on a logarithmic scale.
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FIG. 16. Normalized radius versus normalized axial
position for various values of gas release parameters plotted

on a linear scale.

FIG. 17. Normalized radius versus normalized axial
position for different assumed initial expansion velocities

plotted on a logarithmic scale.

FIG. 18. Normalized travel distance versus normalized
axial position for different density profiles and specific

internal energies.

FI1G. 19. Normalized travel distance versus normalized
axial position for different assumec¢ initial expansion

velocities.

FIG. 20. Normalized travel distance versus normalized
axial position for different values of the ratio of

specific heats.

FIG. 21. Contours of constant transverse scale size
of the conductivity modification in the altitude versus
chemical payload weight plane fcr point barium releases
from rockets. In this and the next 5 figures the model is

invalid in the shaded regions.
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FIG. 22. Contours of constant field-lire-integrated
Pedersen conductivity in the altitude versus chemical
payload weight plane for point barium releases from

rockets.

FIG. 23. Contours of constont transverse scale
size of the conductivity modification in the altitude
versus chemical payload weight plane for point barium

releases at orbital velocity.

FIG. 24. Contours of constant field-line-integrated
Pedersen conductivity in the altitude versus chemical payload

weight plane for point barium releases at orbital velocity.

FIG. 25. Contours of constant transverse scale size
of the conductivity modification in the altitude versus
chemical payload release-rate plane for venting mode

releases at orbital velocity.

FIG. 26. Contours of constant field-line-integrated
Pedersen conductivity in the altitude versus chemical
payload release-rate plane for venting mode releases

at orbital velocity.
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FIG. 6. Number density, n, mass density, ¢o_, and
mean-tfree-path, )\, as a function of altitud® based
on the CIRA 1972 model atmosphere. Note the logn-
rithmic altitude scale. The solid curves corres-
pond to an exospheric temperature T _ = 1200°; the
dashed curves correspond to Tﬂ‘ = 7680 and 2000°.
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Contours of constant characteristic length,
a CIRA 1972 model atmosphere with T = 12000
altitude versus mass-venting-rate pline. The
curves sgow the shape of the contours for Tex
and 2000, :
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FIG. 8. Contours of constant a/\ in the altitude
versus mass-venting-rate plane. The dashed curves
show the shape of the contours for 7T = 7000 and
20000, ex
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FIG. 9. Radial expansion velocity as a function of
normalized radius for different density profiles and
specific internal energies.
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FIG. 10. Radial expansion velocity as a funct‘on of
normalized radius for different assumed initial velocities.
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FIG. 11. Radial expansion velocity as a function of
normalized radius for different values of the ratio of

specific heats,
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FIG. 12. Temperature, defined according to Eq. (56), as
a function of normalized radius for different assumed
initial expansion velocities and ambient atmospheric
temperature.
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FIG. 13. Temperature, defined according to Eq. (56), as
a function of normalized radius for different values of
the ratio of specific heats.
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FIG. 14. Axial velocity in the rest frame of the canister

as a function of normalized radius for different assumed
initial expansion velocities.
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FIG. 16. Normalized radius versus normalized axial
position for various values of gas rclease parameters
plotted on a linear scale.
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FIG. 17. Normalized radius versus normalized axial
position for different assumed initial expansion
velocities plotted on a logarithmic scale.
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FIG, 18. Normalized travel distance versus normalized
axial position for different density profiles and specific
internal ene.gies.
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FIG. 19. lormalized travel distance versus normalized
axial position for different assumed initial expansion
velocities.
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FIG. 20. Norm:'lized travel distance versus normalized
axial position for different values of the ratio of
specific heats.
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FIG. 21. Contours of constant transverse scale
size of the conductivity modification in the
altitvde versus chemical payload weight plane for
point barium releases from rockets. In this and
the next 5 figures the model is invalid in the
shaded regions.
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FIG. 22. Contours of constant field-line-integrated
Pedersen conductivity in the altitude versus chemical
payload weight plane for point barium releases from
rockets.
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FIG. 23. Contours of constant transverse scale
size of the conductivity modification in the
altitude versus cheamical payload weight plane
for point barium ieleases at orbital velocity.
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FIG. 24. Contours of constant field-line-integrated
Pedersen conductivity in the altitude versus
chemical payload weight plane for point barium
releases at orbital velocity.
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FIG. 25. Contours of constant transverse scale
size of the concuctivity modification in *he
altitude versus chemical payload release-rate
plane for venting mode releases at orbital
velocity.
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FIG. 26. Contours of constant field-line-
integrated Pedersen conductivity in the altitude
versus chemical payload release-rate plane for
venting mode releases at orbital velocity.
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